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LETTER TO THE EDITOR

Rosencrantz and Guildenstern may not be dead; on the
interlayer Josephson vortices in Tl-2201

Behnam Farid†
Max-Planck-Institut f̈ur Festk̈orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany

Received 14 May 1998

Abstract. Interpreting their experimental data in terms of an approximate solution of the
Lawrence–Doniach–Clem (LDC) model in the continuum limit (describing an isolated interlayer
Josephson vortex), Moleret al (1998 Science279 1193) have estimated the penetration depth
λc in the direction normal to the layers of the compound Tl2Ba2CuO6+δ (Tl-2201) to have the
value≈ 22 µm. They thus concluded that only≈ 0.1% of the superconducting condensation
energy in Tl-2201 would be due to the interlayer-tunnelling mechanism. We have studied the
LDC model and found that it hasno physical solution. Thereforeλc in Tl-2201 is in need of
re-examination.

Within the framework of the interlayer tunnelling (ILT) theory [1–3] for superconducting
cuprates with high transition temperatures (high-Tc superconductors), the mechanism of
Cooper pairing is at work. This pairing is brought about by the gain in the free energy of the
system associated with the process ofcoherentinterlayer tunnelling of thepairedelectrons, a
process which is assumed to beincoherentfor unpaired electrons. This discriminating effect
is ascribed to the non-Fermi liquid nature of the low-energy excitations in the normal states of
high-Tc cuprates; explicitly, these excitations are not particle-like, unlike the Landau quasi-
particles, but collective. According to the ILT scenario, the superconducting condensation
energy is (almost)entirelyequal to the Josephson-coupling energy. Since the latter energy is
inversely proportional to the square of thec-axis penetration depthλc, the superconducting
condensation energy and consequently the superconducting transition temperatureTc must
rapidly decrease for increasing values ofλc. Therefore for the ILT mechanism to provide a
viable explanation for the phenomenon of high-Tc superconductivity in the known cuprates,
it is necessary thatλc in these compounds be on the order of 1µm (however, see [4]). For
the high-Tc compounds (La, Sr)2CuO4 (‘214’) and HgCa2CuO4 (Hg-1201),λc amounts to
respectively≈3 and≈1 µm [3].

Moler et al [5] have recently measured the magnetic flux due to some isolated interlayer
Josephson vortices in samples of the single-layer compound Tl2Ba2CuO6+δ (Tl-2201) by
means of a small pick-up loop moved at constant heights (z0 ≈ 3 µm) from surfaces of
these parallel to theac-plane (thea- andb-axes are normal to thec-axis and thus span a
plane parallel to the CuO planes). Through a fitting procedure (for details see further on)
involving the measured magnetic fluxes as functions of position of the pick-up loop with
respect to locations of some well-isolated interlayer vortices, these authors have determined
λc ≈ 22 µm for Tl-2201. This large value forλc implies that (i) the ILT mechanism is
not operative in Tl-2201 and, most importantly, (ii) this mechanism isnot generic for the
high-Tc superconductivity in the cuprates.

† E-mail address: farid@audrey.mpi-stuttgart.mpg.de.
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For deducing the value ofλc, Moler et al [5] rely on the assumption that the magnetic
flux densityBẑ(x, y, z) in the z-direction (i.e. the direction coinciding with that of theb-
axis) atz = 0, the position of the surface of the sample, isidentical to bẑ(x, y) pertaining
to the infinite, surface-free, sample; whence thez-independence ofbẑ(x, y). Within the
‘elliptical approximation’, developed by Clem [6] and Clem and Coffey [7] and employed
by Moler et al [5] in their analyses,bẑ(x, y) is replaced bybẑ(x, y) which is related to
b̃ẑ(%) whose significance we shall elaborate upon below. We have

bẑ(x, y):= 80

2πsλc
b̃ẑ
(
([x/λa]

2+ [y/λc]
2)1/2

)
(1)

where

b̃ẑ(%) ≡ 2πsλc
80

bẑ(x = 0, λc%). (2)

Here80:=hc/[2e] stands for the superconductor magnetic-flux quantum withh the Planck
constant,c the speed of light in vacuum and−e (< 0) the electron charge;λa denotes the
in-plane penetration depth (assumed to be isotropic, i.e.λa = λb) and s the sum of the
superconductor layer thicknessds and the insulating layer thicknessdi . In this work we
shall follow Moler et al, [5] and fors andλa, pertaining to Tl-2201, adopts = 11.6 Å and
λa = 0.17 µm. As is evident from equations (1) and (2), forx → 0, bẑ(x, y)→ bẑ(0, y).

The magnetic flux densitybẑ(x, y) is determined from a set of two coupled non-linear
partial differential equations (DEs) which involve the gauge-invariant Josephson phase-
difference1γn(x, y) corresponding to thenth and the(n + 1)th superconducting layers.
Specializing to thecentral layer, corresponding ton = 0 andx = 0 (the pointx = y = 0
coincides with the core centre of the isolated Josephson vortex), Clem and Coffey [7] have
obtained a coupled set of non-linearordinary DEs for bẑ(0, y), which, in consequence of
equation (2), give rise to the following equations [8] forb̃ẑ(%) andφ(%):=1γ0(x = 0, λc%):

b̃ẑ(%) = −∂φ(%)
∂%
− sinφ(%)

%
(3)

∂2φ(%)

∂%2
+ 1

%

∂

∂%
sinφ(%)−

(
1+ 1

%2

)
sinφ(%) = 0. (4)

A third equation, associated with the Josephson relation, from which, in combination with
equation (3), equation (4) has been obtained, reads

∂b̃ẑ(%)

∂%
= − sinφ(%). (5)

The physical solutionφ(%) of equation (4) has to satisfy the boundary conditions (BCs)
φ(0) = π andφ(%→∞)→ 0 [7]. In addition to these, the fluxoid-quantization condition
(FQC) ∫ ∞

0
d%%2 sinφ(%) = 2s

λa
(6)

has to be fulfilled [7]. This latter condition follows from
∫∞

0 d%% b̃ẑ(%) = s/λa, which in
turn is a consequence of

∫
dxdybẑ(x, y) = n80 corresponding ton = 1 (the case of the

singly-quantized fluxoid) and equations (1) and (2). The conditionφ(0) = π is due to
the reflection symmetry of the model with respect to thezx-plane which, because of phase
symmetry [9], implies1γ0(0, y) = 2π −1γ0(0,−y), whereasφ(%→∞)→ 0 is required
for the total magnetic flux due to a vortex to be finite; as is evident from equation (6), for
this φ(%) has to approach zero not slower than 1/%p with p > 3. The same requirement
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implies that for%→∞, b̃ẑ(%) has to vanish not slower than 1/%p with p > 2. Similarly,
for % ↓ 0, b̃ẑ(%) must not diverge faster than 1/%p with p > 2. An asymptotic analysis of
equation (4) yields

φ(%) ∼ π −
(
C ′0% J0(%)+ C ′′0% Y0(%)

)
∼ π −

(
C ′0% +

2

π
C ′′0% ln(%)

)
% ↓ 0 (7)

φ(%) ∼ C∞K1(%) ∼ C∞
(
π

2%

)1/2

exp(−%) %→∞. (8)

HereJν , Yν andKν stand, respectively, for the order-ν Bessel functions of the first kind,
the second kind and the modified third kind [10];C ′0, C ′′0 and C∞ are constants whose
method of determination we shall describe further on in this work. Equation (7) implies
that ∂φ(%)/∂% is logarithmically divergent at% = 0. From equations (3) and (7) it
readily follows that for% ↓ 0, b̃ẑ(%) ∼ 2C ′′0/π ; for % → ∞, equations (3) and (8) yield
b̃ẑ(%) ∼ C∞(π/[2%])1/2 exp(−%). Both of these results are consistent with the above-
indicated requirements to be met byb̃ẑ(%) for the flux due to a Josephson vortex to be
finite.

It is interesting to note that the physical solutionφ(%) of equation (4) isindependent
of λc: all functions in equation (4) are universal, as are the boundary valuesπ = φ(0)
and 0= φ(∞). Further,φ(%) merely parametrically depends on the physical quantitiess

andλa, via the FQC in equation (6), and in the particularly limited way that only theratio
s/λa is of influence. The sole way in whichλc enters on the scene is through setting the
unit of length according to whichy is measured in terms of%. These observations clearly
underline thea priori limitations of the ‘elliptical approximation’ (see also text following
equation (10) below). In fact these observations gave us the initial impetus to investigate
the problem at hand in some detail.

Below we shall argue that the DE in equation (4) together with the mentioned BCs and
the FQC amount to aphysicallyover-specified problem. It turns out that as a consequence
of this, the problem at hand hasno physical solution. This over-specification is partly due
to the above-indicated approximation concerningbẑ(x, y) in the central layer, restricting
bẑ(x, y), a function of two variables, tõbẑ(%), one of a single variable, and partly due to%
being limited to the form% ≡ %(x, y) = ([x/λa]2 + [y/λc]2)1/2, confining the contours on
the xy-plane corresponding to constant values ofb̃ẑ(%) to be ellipses.

The approximate ‘solution’ put forward by Clem and Coffey [6, 7] forφ(%)—which we
shall denote byφC(%)—and employed in the analyses by Moleret al [5], has functionally
the same form as the asymptotic expression in the second term on the right-hand side of
equation (8), however, it involves a modified argument which approaches% for large values
of %. We have

φC(%):= s

λa
K1
(
(η2+ %2)1/2

)
(9)

whereη ≡ s/[2λa]. A non-vanishingη, irrespective of its precise value, serves to prevent
the corresponding magnetic flux densityb̃ẑ(%), i.e. b̃ẑ;C(%) ≡ (s/λa)K0

(
(η2+ %2)1/2

)
, from

being unbounded at% = 0. We point out thatφC(0) ∼ 2, for (s/λa) ↓ 0, in violation of
the BC, namelyφ(0) = π . This demonstrates thatφC(%), in contrast to the prevailing view
[6, 7], cannot be a variational approximation toφ(%). Aside from this, the logarithmic
divergence of∂φ(%)/∂% (∼ −(2/π)C ′′0 ln(%) − (C ′0 + 2C ′′0/π)) for % = 0 signifies that
violation of φ(0) = π by φC(%) leads to a substantial deviation ofφC(%) from its ‘exact’
counterpart (assuming an exact counterpart existed) in the close vicinity of% = 0; from
equation (3) this deviation is seen to lead to a considerable deviation ofb̃ẑ;C(%) from its
‘exact’ form (again, assuming that an exact form existed); see [11].
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The valueη = s/[2λa] has been derived by Clem and Coffey [7] through requiring a
matching (applicable in the region% � η) between(s/λa)K0(%) for small values of%, so
thatK0(%) ∼ − ln(%), with a b̃ẑ(%) as determined from an explicit asymptotic solution of
equations (3) and (5) for% ↓ 0 (see [11]). Since for a finiteη, K1

(
(η2+%2)1/2

)
is regular for

all %, owing to the%2 in the integrand of equation (6) combined with the exponential decay
of K1(%) for large %, to a good approximation sin

(
[η/2]φC(%)

)
can, under the integral

sign, be replaced by [η/2]φC(%), which, following the exact result
∫∞

0 d%%2K1(%) = 2,
leads toφC(%) to an extremely good approximation satisfying the FQC in equation (6); for
s/λa

<∼10−2, b̃ẑ;C(%) violates the FQC by not more than five parts in 103 (seeIβ(0) below;
note thatηTl−2201≈ 3.4× 10−3).

The above details serve to specify the degree to whichφC(%) can be considered to
‘satisfy’ equation (4), the BCs and the FQC.

We have attempted to solve the non-linear DE in equation (4) numerically, taking into
account the appropriate BCs and the FQC. The BCs involve three undetermined coefficients,
C ′0, C ′′0 andC∞, which were to be obtained within the following framework: by selecting a
(large) value%0, we have first chosen a dense set of points{ρi |i = 1, 2, . . . ,M; ρi < ρi+1},
(M ∼ 103) over the interval [0, %0] (in the course of integrating the DE,M could
automatically be increased to achieve a specified accuracy in the calculatedφ(%), thus
in some cases we have hadM ∼ 104 for %0 ≈ 3); we have chosen{ρi} to be the
set of shifted and rescaled zeros of the Legendre polynomial [10] of orderM, thus
ensuring a dense distribution of theρi points close to% = 0 and%0; to exclude% = 0
from {ρi} (as our formulae involve, e.g., ln(%)), we have restrictedM to odd integer
values. We have subsequently required that (A)φ(%) as extrapolated to% = 0 be equal
to π ; (B) ∂φ(%)/∂% coincide with C∞∂K1(%)/∂% at % = ρM , and (C) the FQC in
equation (6) be satisfied (as we shall point out below, these three requirements are not
unique). We have employed the following formulation for the FQC:

∫ %0

0 d%%2 sinφ(%) =
(2s/λa){1− (λa/[2s])

∫∞
%0

d%%2 sin
(
C∞K1(%)

)}. This choice, though seemingly trivial, is
of fundamental importance owing to the practical limitation as to the maximum interval
[0, %0] over which the DE can be numerically integrated (see further on). Assuming
C∞ ≈ s/λa � 1 (compare with equations (8) and (9)), the following collection of results
for Iβ(%0):=β−1

∫∞
%0

d%%2 sin
(
βK1(%)

)
, with β → 0 (compare with 2s/λa � 1), clarify

our point of view: Iβ(0) ≈ 1.996, Iβ(1) ≈ 1.623, Iβ(2) ≈ 1.014, Iβ(3) ≈ 0.553,
Iβ(3.5) ≈ 0.396, Iβ(4) ≈ 0.278. These show that despite the rapid decrease ofK1(%)

for increasing%, a substantial contribution to the right-hand side of the FQC in equation (6)
could be due to the asymptotic tail ofφ(%). We mention that for the purpose of evaluating
the integral involved in the FQC, we have first constructed a monotonicity-preserving cubic
Hermite interpolant from{φ(ρ ′i )} on the set{ρ ′i} ⊇ {ρi}, i.e. {ρi} as extended in the course
of integrating the DE (see above), and subsequently exactly integrated this interpolant [12].

For a given set of coefficients{C ′0, C ′′0, C∞}, we have numerically solved the DE in
equation (4) by means of the so-called deferred-correction technique combined with a
Newton iteration procedure [12]; we have also used a Runge–Kutta–Merson algorithm
combined with a Newton iteration within a shooting-and-matching framework [12],
obtaining, to the accuracy of our numerical calculations, identical results. With both of
these methods one has the possibility of specifyingfour BCs of which two must be exact
and two possibly approximate, subject to the restriction that the exact conditions must not
all correspond to the same boundary. In applying these methods, we have first transformed
the second-order DE forφ(%) into a set of two coupled first-order equations by means of
introducing the auxiliary functionϕ(%):=∂φ(%)/∂%. Of the four conditions at our disposal,



Letter to the Editor L593

concerningφ(%) andϕ(%) at % = ρ1 and % = ρM , we have chosenϕ(ρ1) andφ(ρM) as
being exactly described by the expressions in equations (7) and (8); in evaluating these
expressions we have employedJ0, Y0 andK1 rather than their corresponding leading-order
asymptotic expressions given on the right-most parts of equations (7) and (8). This choice
for the twoexactBCs clarifies our above requirements (A) and (B). If, for instance, one of
the exactBCs wereφ(0) = π , then the above requirement (A) would have to be different.
We have numerically examined various alternatives, and the conditions described above have
proved to be numerically most robust. ConcerningC ′0, C ′′0 andC∞, we have attempted to
determine these by employing a modification of the Powell hybrid method [12].

Now we present the main observations of our extensive numerical calculations. Before
doing so, we should like to emphasize that unless we explicitly indicate otherwise, these
observations donot constitute mathematical facts, rather they are empirical in that they
are outcomes of our extensive and systematic numerical experiments. The utmost care
that we have spent in conducting these, however, give us reasoned confidence that our
findings are free from numerical artifacts. For completeness, our numerical computations
were performed using double-precision arithmetic.

(i) First, there existsno φ(%) that in addition to satisfying the DE in equation (4),
conforms with the BCs and the FQC. In other words, there exists no{C ′0, C ′′0, C∞} for
which the above conditions (A), (B) and (C) can be satisfied. In this connection it is
important to mention that by relaxing the condition (C) we obtain aφ(%), supporting our
statement with regard to the over-determinedness of the problem at hand.

(ii) Second, it is possible to construct solutions over [0, %0] (through numerically
integrating the DE, in conformity with the BC at% = 0) that at%0 . 3.5 match the
asymptotic tailC∞K1(%) for φ(%); the union of the twoφ(%)s further satisfies the FQC in
equation (6). However, inall cases investigated by us, these functions have turned out to
have unequal slopes at the matching point% = %0.

A discontinuity in the slope ofφ(%) has some far-reaching consequences. For instance,
a discontinuity of this type at% = %0 implies ∂2φ(%)/∂%2 ∝ δ(% − %0) for % = %0,
which can never correspond to a solution of equation (4), as no term in this equation can
compensateδ(% − %0) to render the left-hand side vanishing [13]. Further, according to
equation (3) a discontinuity in the slope ofφ(%) gives rise to a constant contribution to
b̃ẑ(%). Since for large values of%, φ(%) is monotonically decreasing (see equation (8)),
such a constant contribution tõbẑ(%) can never be compensated by one or a number of
possible subsequent discontinuities in the slope ofφ(%). Thus a slope discontinuity in
φ(%), at say% = %0 ≈ 3.5, gives rise to lim%→∞ b̃ẑ(%) 6= 0. This implies violation
of the FQC, as presented and discussed in the text following equation (6) above (for
lim%→∞ b̃ẑ(%) 6= 0, equation (6), which has been obtained from the actual FQC through
integration by parts, is incomplete and therefore does not show up the problem). To
appreciate the drawback of this violation in practical applications, consider the following.
For the magnetic flux density at the surfaceS(x, y) circumscribed by the pick-up loop, with
x and y the Cartesian coordinates of some point of the loop (for the square-shaped loop
employed in the experiments, we take this point to coincide with its centre point), Moler
et al [5] have made use of the electrodynamics of the free space [14], thus interrelating the
measured magnetic flux8s(x, y, z0) through the pick-up loop tobẑ(x ′, y ′) by means of the
expression8s(x, y, z0) =

∫
dx ′dy ′bẑ(x ′, y ′)f (x ′, y ′; x, y, z0) where

f (x ′, y ′; x, y, z0) := z0

2π

∫
S(x,y)

dx ′′dy ′′
(
(x ′ − x ′′)2+ (y ′ − y ′′)2+ z2

0

)−3/2
.

The former integral is over the entirexy-plane. Within the ‘elliptical approximation’,
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employed by Moleret al [5] the above expression for8s reduces to

8s(x, y, z0)

80
= λa

s

∫ ∞
0

d%% b̃ẑ(%) gλa,λc (%; x, y, z0) (10)

wheregλa,λc (%; x, y, z0):=(2π)−1
∫ 2π

0 dϕf (λa% cos(ϕ), λc% sin(ϕ); x, y, z0). It is important
to notice that theonly way in whichλc, within the ‘elliptical approximation’, exerts influence
on the behaviour of8s/80 is via a linear scaling of one argument of thef -function which
is solely characterized by the measuring apparatus (i.e. byS) and the relative position,z0,
of this with respect to some surface; as far asf is concerned, it is immaterial whether the
space below this surface is occupied by vacuum or by a superconductor (see our remarks
in the paragraph following equation (8) above).

A simple asymptotic calculation reveals that for% → ∞, to the leading order in the
inverse of%, the following asymptotic relation holds:gλa,λc (%; x, y, z0) ∼ z0ASE(1 −
λ2
a/λ

2
c)/[π

2λ2
aλc%

3], whereAS stands for the area ofS andE(k) denotes the complete
elliptic integral of the second type [10];E(k) decreases from 1.57. . . at k = 0 to 1 atk = 1
so that in view of the smallness ofλ2

a/λ
2
c in the problem at hand (even forλc ≈ 1 µm), to

a very good approximationE(1− λ2
a/λ

2
c) in this asymptotic expression can be replaced by

unity. Now in view of the% in the integrand in equation (10), a non-vanishing constant for
b̃ẑ(%) as%→∞ leads to a critical dependence of8s/80 on the value of the upper bound
of the %-integration. The value of the coefficient of the 1/%3 on the right-hand side of the
above asymptotic expression forAS = 8.2× 8.2 µm2 (equal to that in the experiments by
Moler et al [5]), z0 = 3 µm andλc = 22 µm amounts to≈ 30; for λc = 1 µm this value
would be≈700. Suppose now that the%-integration on the right-hand side of equation (10)
were carried out over [0, %1] with %1 > %0. From our numerical calculations we have
obtained that(λa/s)b̃ẑ(%0) ≈ 5.9× 10−2 for %0 = 3.5 (note thatλa/s ≈ 1.5× 102) and that
b̃ẑ(%) ≈ b̃ẑ(%0) for % > %0. It trivially follows that by changing%1 from %0 = 3.5 to∞, the
value of8s/80 would change with an additive constant, behaving like 1.9× (1/%0−1/%1),
between 0 and≈0.5. The magnitude of this change in8s/80 is substantial in view of
the fact that the amplitudes of the curves corresponding to Tl-2201 for8s/80 as measured
by Moler et al [5] amount to≈ 0.1. We remark that since for% ↓ 0, gλa,λc (%; x, y, z0) is
independent ofλc (andλa), the above asymptotic expression concerninggλa,λc (%; x, y, z0),
for large%, makes explicit the crucial role that the tail ofb̃ẑ(%) plays in determining8s/80

and the way in whichλc affects the latter quantity.
(iii) Last, numerical integration of the DE over [0, %0] turns out to be extremely difficult

to carry out when%0
>∼3.5; we have not had any success in this for%0 > 3.6. The origin of

this difficulty is readily understood by realizing that the contribution ofφ(%) in the tail region
[%0,∞) to the FQC decreases in significance the larger%0 becomes (our explicit calculation
shows that for% = 3.5, this contribution amounts to≈ 2.3% of 2s/λa) so that through
increasing%0, condition (C) turns into the least significant of the three conditions (A), (B)
and (C). Consequently, for increasing%0, the above-discussed slope-discontinuity problem,
which we have ascribed to the over-specification of the problem at hand, manifests itself in
the ‘shrinkage’ of the space of functionsφ(%) that, for agiven {C ′0, C ′′0, C∞}, satisfy both
the DE and the asymptotic boundary conditions in equations (7) and (8). Since the exact
{C ′0, C ′′0, C∞} has to be obtained iteratively (owing to the non-linearity of the conditions
(A), (B) and (C)), for growing%0 it becomes increasingly more likely that an initial (or
trial) choice for{C ′0, C ′′0, C∞} renders the conditions in equations (7) and (8) incompatible
with the DE: integrating the DE from% = 0 upwards and from% = %0 downwards, taking,
respectively, the left and right BCs into account, the solutions cannot be matched with a
continuous slope. If it turns out that for%0 = 3.6 all {C ′0, C ′′0, C∞} lead to the above-
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mentioned incompatibility problem, then it has been rigorously established that 3.6 is very
special; with ourfinite number of failed attempts, we are not in a position to assign 3.6 this
status, however.

In view of the above considerations, the apparent unavoidability of slope discontinuity
in φ(%) is the clearest indication that the problem at hand is physically ill-imposed. Any
approximation, such asφC(%), to thenon-existentsolution of this problem must therefore
imply spurious values for some, if not all, of the relevant length scales in the problem at
hand. In consequence, the value deduced by Moleret al [5] for λc concerning Tl-2201 is
in serious need of reconsideration.

We are presently attempting to solve the Lawrence–Doniach–Clem model (described
by a set of coupled, constrained, non-linear,partial DEs) in its general form, bypassing
the ‘elliptical approximation’. Comparison of the outcomes of these calculations with the
experimental results by Moleret al [5] will shed light on the value ofλc as well as other
parameters (in particular) in Tl-2201. The non-triviality of this problem is largely due to the
fact that these coupled non-linear DEs belong to the class of so-calledstiff [15] boundary-
value problems. The non-separability of the model further enhances the difficulties.

It is a pleasure for me to thank Dr Christian Bernhard, Professor Lars Hedin and Dr Peter
Horsch for discussion. I am indebted to Dr Ernst Helmut Brandt for his critical reading of
the manuscript of this work. With appreciation I acknowledge support by the Max-Planck-
Gesellschaft, Germany.

Note added in proof. The following observations are worth indicating. We have extracted the experimental data
for 8s/80 from figure 2(I) in the work by Moleret al [5] (120 data points) and attempted to deduce from these
various parameters of the system within the framework of the Clem–Coffey [7] ‘elliptical approximation’. For an
8.2× 8.2 µm2 square-shaped pick-up loop andλa = 0.17 µm (these values are those employed by Moleret al
[5]), we have obtainedz0 = 2.97 µm andλc = 22.43 µm (the standard deviation of our fitted curve from the
experimental data for8s/80 amounts toσ = 4.3×10−3), compared withz0 = 3.0±0.6µm andλc = 22+6

−4 µm by
Moler et al [5]. The agreement between the two sets of fitting results give us confidence that our computations have
been performed in conformity with those by Moleret al [5]. In a series of further computations (based on the same
experimental data as above) we have obtained the following results (below by(a, b, c, . . . ; σ) = (a′, b′, c′, . . . ; σ ′)
we indicate thata, b, c, etc, have been variables in the fitting process anda′, b′, c′, etc, are the corresponding
best values, withσ = σ ′ the standard deviation as introduced above; unless indicated otherwise, all lengths
are inµm): (z0, λc, λa; σ) = (1.33, 16.79, 6.76× 10−4; 3.2× 10−3); (z0, λc, λa, s; σ) = (2.72, 20.62, 3.34×
10−2, 170.65 Å; 3.7× 10−3); (z0, λc, λa, s, θ; σ) = (2.70, 17.74, 1.62× 10−2, 214.87 Å , 19.89◦; 3.2× 10−3);
hereθ stands for the change in the alignment of the diagonal of the pick-up loop with respect to they-axis (in
other cases whereθ is not given,θ = 0). A most striking feature of these results is the substantial underestimation
of λa with respect to the experimental value, taken to be 0.17 µm (another striking feature is the overestimation
of s by a factor between 15 to 20 as compared with the experimental value of 11.6Å). As a consequence of
this, in all cases we haves/λa ∼ 1 which implies violation of the condition for applicability of the Clem–Coffey
‘approximation’, that isη := s/[2λa ] � 1 (see paragraph containing equation (9); in particular note that forη 6� 1,
φC(%) doesnot satisfy the FQC).
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